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Abstract
We study the Kowalevski expansions near singularities of the swinging
Atwood’s machine. We show that there is an infinite number of mass ratios
M/m where such expansions exist with the maximal number of arbitrary
constants. These expansions are of the so-called weak Painlevé type. However,
in view of these expansions, it is not possible to distinguish between integrable
and nonintegrable cases.

PACS number: 02.30.Ik

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The swinging Atwood’s machine is a variable length pendulum of mass m on the left, and a
nonswinging mass M on the right, tied together by a string, in a constant gravitational field,
see figure 1. The coupling of the two masses is expressed by the fact that the length of the
string is fixed: √

x2 + y2 + |z| = L, �⇒ x2 + y2 = (|z| − L)2.

Up to a choice of origin for z, one can assume L = 0, so the constraint is the cone z2 = x2 +y2.
To describe the dynamics we choose to work with constrained variables and write a Lagrangian

L = m

2
(ẋ2 + ẏ2) +

M

2
ż2 − g(my + Mz) +

λ

2
(x2 + y2 − z2),

where λ, a Lagrange multiplier (of dimension MT −2), has been introduced, whose equation
of motion enforces the constraint. The equations of motion read

mẍ = λx (1)

mÿ = −mg + λy (2)
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Figure 1. Swinging Atwood’s machine.

Mz̈ = −Mg − λz (3)

0 = x2 + y2 − z2. (4)

From these equations, one can express λ in terms of positions and velocities:

λ = xẍ + yÿ − zz̈ + g(y − z)
1
m

(x2 + y2) + 1
M

z2
= mM

M + m

ż2 − ẋ2 − ẏ2 + g(y − z)

z2
. (5)

Alternatively, rescaling

x → 1√
m

x, y → 1√
m

y, z → 1√
M

z

we can view the system as a unit mass particle moving on a cone

z2 = M

m
(x2 + y2)

subjected to a constant field force⎛
⎝fx

fy

f z

⎞
⎠ =

⎛
⎝ 0

−g
√

m

−g
√

M

⎞
⎠ .

The slope of the force in the (y, z) plane coincides with the angle of the cone.
The swinging Atwood’s machine has been studied in great detail by Tufillaro and his

co-workers, see [1–7]. They have first studied numerically the equations of motion and shown
that for most values of the mass ratio M/m the motion appears to be chaotic; however, for
some values, like 3, 15, etc the motion seems less chaotic and could perhaps be integrable.
In a further study, Tufillaro [4] showed that the system is indeed integrable for M/m = 3
by exhibiting a change of coordinates, somewhat related to parabolic coordinates, in which
separation of variables occurs. He was then able to solve the equations of motion in terms of
elliptic functions, which is quite peculiar since in general integrable systems with two degrees
of freedom can be solved only in terms of hyperelliptic functions, such as for the Kowalevski
top [8]. He also obtained the second conserved quantity which ensures integrability. In the
same paper, he conjectured that the system is integrable for M/m = 15, . . . , 4n2 − 1, with n
integer.

2



J. Phys. A: Math. Theor. 43 (2010) 085207 O Babelon et al

However, later on, Casasayas et al proved [6] that the system can be integrable for discrete
values of the ratio M/m only in the interval ]1, 3], using nonintegrability theorems developed
by Yoshida [9] and Ziglin. The essence of the Yoshida–Ziglin argument is to study the
monodromy developed by Jacobi variations around an exact solution, when the time variable
describes a loop in the complex plane. The monodromy must preserve conserved quantities,
but this is impossible in general if the monodromy group is not abelian. In the case at hand,
one can compute monodromies from hypergeometric equations and conclude. We have also
been informed by private communication from J P Ramis that he and his co-workers have
proven that the swinging Atwood’s machine is never integrable except for M/m = 3, using
methods from differential Galois theory.

The aim of our paper is to work out the Kowalevski analysis for this model. Let us recall
the idea of the Kowalevski method. If a dynamical system is algebraically integrable one can
expect to obtain expressions for the dynamical variables in terms of quotients of theta functions
defined on the Jacobian of some algebraic curve of genus g, where g = 2 for a system with
two degrees of freedom. Only quotients may appear because theta functions have monodromy
on the Jacobian torus, which needs to be canceled. Hence, denominators which can vanish
for any given initial conditions and for some finite value, in general complex, of time will
appear in the solution. Hence, the equations of motion must admit Laurent solutions—that
is divergent for some value of time, with as many parameters as there are initial conditions.
Kowalevski first noted [8] that this imposes strong constraints on these equations, from which
she was able to deduce the celebrated Kowalevski case of the top equation.

Looking for Laurent solutions to the swinging Atwood’s machine equations of motion in
the integrable case M/m = 3 we first noted that there are none, but there exist the so-called
weak Painlevé solutions, that is Laurent developments not in the time variable t but in some
radical t1/k , generally called Puiseux expansions.

It had already been discovered by Ramani et al [10] that some integrable systems require
weakening the Kowalevski–Painlevé analysis to obtain expansions at infinity of dynamical
variables. This may be explained in general, and is certainly the case for our example, by the
fact that there is a ‘better’ variable which has true Laurent expansions and time itself can be
expressed in terms of this variable through an algebraic equation which happens to produce the
given radicals. Moreover Ramani et al advocated the idea that the existence of weak Painlevé
solutions is a criterion of integrability, like in the Kowalevski’s case.

For our model of the swinging Atwood’s machine, we find that there are weak Painlevé
solutions not only when M/m = 15 but for a whole host of other values of the mass ratio,
all of them corresponding to obviously nonintegrable cases. Hence, this model provides a
large number of counterexamples to the above idea. We then study in detail the solutions
around infinity which can be extracted from these Kowalevski developments. Using Padé
approximants, we are able to extend these solutions beyond the first new singularity and
observe how the new singularities obey Kowalevski exponents.

We also comment on the Poisson structure of the model, which is interesting due to
the constraints between the dynamical variables, and the Poisson brackets of the variables
appearing in the Laurent series, which happens to be of a nice canonical form. We notice
that this illustrates the fact that it is the global character of the conserved quantities that is of
importance in defining an integrable system.

One of us (MT) is happy to acknowledge useful conversations with J P Ramis3 and
J Sauloy from Toulouse University, about their work on differential Galois theory applied to

3 http://www.maia.ub.es/dsg/2009/0903simo.ps.gz
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the swinging Atwood’s machine. Finally we are happy to thank the Maxima team4 for their
software, with which we have performed the computations in this paper.

2. Hamiltonian setup

The description we have given of the swinging Atwood’s machine is a constrained system in
the Lagrange formulation, so that the equations of motion take a nice algebraic form.

In the articles [1–7] polar coordinates are used, so the constraint is ‘solved’ but the price to
pay is the use of trigonometric functions. Using polar coordinates x = r sin θ , y = −r cos θ

the Hamiltonian reads

H = 1

2(m + M)
p2

r +
1

2mr2
p2

θ + gr(M − m cos θ), (6)

where pr = (m + M)ṙ and pθ = mr2θ̇ .
We now give a Hamiltonian description of this system, using as dynamical variables the

three coordinates x, y, z and the three momenta px, py, pz with canonical Poisson brackets.
The constraint

C1 ≡ z2 − x2 − y2 = 0 (7)

generates the flow

{C1, px} = −2x, {C1, py} = −2y, {C1, pz} = 2z (8)

which is also generated by the one parameter group acting on phase space by (x, y, z) →
(x, y, z), (px, py, pz) → (px − μx, py − μy, pz + μz), where μ is the group parameter.

We want to describe the dynamics of our model as a Hamiltonian system obtained by
reduction of an invariant system under this group action [11]. In order to do that, consider the
functions

Ax = zpy + ypz

Ay = zpx + xpz

Az = xpy − ypx.

These functions Poisson commute with the constraint C1 and hence are invariant under the
group action. They are not independent however, since they are related by

yAy − xAx + zAz = 0. (9)

It is easy to check the Poisson brackets

{Ax,Ay} = −Az, {Ax,Az} = −Ay, {Ay,Az} = Ax

{Ax, x} = 0, {Ax, y} = z, {Ax, z} = y

{Ay, x} = z, {Ay, y} = 0, {Ay, z} = x

{Az, x} = −y, {Az, y} = x, {Az, z} = 0.

Let us consider the invariant Hamiltonian

H = 1

2(m + M)z2

[
A2

x + A2
y +

M

m
A2

z

]
+ Mgz + mgy. (10)

To check that H generates the equations of motion on the reduced system, we compute

ẋ = {H, x} = 1

m + M

1

z2

(
zAy − M

m
yAz

)
(11)

4 http://maxima.sourceforge.net/.
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ẏ = {H, y} = 1

m + M

1

z2

(
zAx +

M

m
xAz

)
(12)

ż = {H, z} = 1

m + M

1

z2
(xAy + yAx). (13)

The right-hand sides of these equations are linear in the momenta px, py, pz; however, we
cannot invert the system uniquely in order to express the momenta in terms of the velocities.
This is because, due to the symmetry ({H,C1} = 0) we have xẋ + yẏ = zż so the equations
are not independent. The solution is

px = mẋ + μx (14)

py = mẏ + μy (15)

pz = Mż − μz, (16)

where μ is arbitrary. Similarly we compute ẍ = {H, ẋ}, etc where ẋ, etc are the right-hand
sides of the above equations. Performing this calculation and using the constraint C1 and
equation (9), we obtain the Lagrangian equation of motion (1)–(3), with λ given by

λ = mM

m + M

1

z2

[
g(y − z) − 1

m2z2
A2

z

]
.

This coincides with equation (5), as can be checked using again equations (14)–(16) and the
constraint C1, to express Az in terms of ẋ, ẏ, ż.

Finally we express the energy in terms of velocities still using the constraints. We find

E = m

2
(ẋ2 + ẏ2) +

M

2
ż2 + g(my + Mz), (17)

which agrees with what we expect from the Lagrangian formulation.

3. The integrable case

In order to understand what sort of Laurent expansions appear in the model, it is useful to
first consider the case M/m = 3 which has been integrated by Tufillaro [4]. Let us recall
some of his results. He discovered that using polar coordinates (r, θ) such that x = r sin θ ,
y = −r cos θ and r = z, and setting

ξ 2 = z[1 + sin(θ/2)], η2 = z[1 − sin(θ/2)],

the Hamilton–Jacobi equation separates into the variables (ξ, η). These look like parabolic
coordinates, except that the half-angle θ/2 is used. Knowing ξ and η, one can recover x and
y by

x± ≡ x ± iy = ± i

2

(ξ ∓ iη)3

(ξ ± iη)
, z = 1

2
(ξ 2 + η2). (18)

In fact, just for M = 3m, two terms involving couplings between ξ and η disappear, and one
gets with momenta pξ = 4ξ̇ (ξ 2 + η2) etc the expression of the Hamiltonian, in which we have
set m = 1:

H = [(
p2

ξ + p2
η

)/
8 + 2g(ξ 4 + η4)

]
/(ξ 2 + η2).

Then it is clear that in this case the action S separates as a sum Sξ (ξ) + Sη(η) where Sξ

and Sη obey different elliptic equations (corresponding to different elliptic moduli):

5
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(∂ξSξ )
2 = −16gξ 4 + 8Eξ 2 + I ≡ P+(ξ) (19)

(∂ηSη)
2 = −16gη4 + 8Eη2 − I ≡ P−(η), (20)

where I is the separation constant. It can be expressed in terms of dynamical variables by
subtracting the above two equations multiplied resp. by η2 and ξ 2, which eliminates E.
Moreover, we replace

∂ξS = pξ = 4ξ̇ (ξ 2 + η2), ∂ηS = pη = 4η̇(ξ 2 + η2). (21)

We get

I/16 = (ξ 2 + η2)(η2ξ̇ 2 − ξ 2η̇2) + gξ 2η2(ξ 2 − η2)/(ξ 2 + η2).

Returning to polar coordinates, the integral of motion takes the form

I/16 = r2θ̇

[
ṙ cos(θ/2) − rθ̇

2
sin(θ/2)

]
+ gr2 sin(θ/2) cos2(θ/2).

We want to see if the equations of motion admit a solution which diverges at finite time,
and in that case what is the behavior of the Laurent expansion.

The general solution of the Hamilton–Jacobi equation is

S = −Et +
∫ ξ √

P+(ξ) dξ +
∫ η √

P−(η) dη.

According to the general theory, we get the solution of the equations of motion by writing
∂ES = cE and ∂IS = cI for two constants cE and cI. For cI �= 0, we get

t + cE =
∫ ξ 4ξ 2

√
P+(ξ)

dξ +
∫ η 4η2

√
P−(η)

dη (22)

cI = 1

2

∫ ξ 1√
P+(ξ)

dξ − 1

2

∫ η 1√
P−(η)

dη. (23)

For I = 0, the elliptic integrals degenerate to trigonometric ones. We get

t + cE = − 1

2ω

(√
1 − αξ 2 +

√
1 − αη2

)
, α = 2g/E, ω = g/

√
2E (24)

1 −
√

1 − αξ 2

1 +
√

1 − αξ 2
= K2 1 −

√
1 − αη2

1 +
√

1 − αη2
, K2 = ecI , (25)

so that setting ξ = sin(φξ )/
√

α, η = sin(φη)/
√

α the second equality reads

tan(φξ/2) = K tan(φη/2).

Using the variable s = tan(φξ/2), ξ and η can be expressed rationally:

ξ = 1√
α

2s

1 + s2
, η = 1√

α

2Ks

K2 + s2

Finally, one gets the time variation of S ≡ s2 by using equation (24) which implies

ω dt = dS

[
1

(1 + S)2
+

K2

(K2 + S)2

]
= − 8iK

K2 − 1

UdU

(U 2 − 1)2
,

where we have parametrized S as

S = iK
(K + i)U + (K − i)

(K − i)U − (K + i)
.

6
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The variable U has been defined to send the poles S = −K2 and S = −1 to U = ±1. One
gets the two parameters solution (parameters K and E) up to an origin for time, which we fix
by requiring that t = 0 for U = 0:

U 2 = t

t − t∞
or U 2 − 1 = t∞

t − t∞
�⇒ t = −t∞

U 2

1 − U 2
, t∞ = 1

ω

4iK

K2 − 1
.

We will soon see that t = t∞ is a second singularity of the dynamical variables, that we can
express explicitly. For ease of comparison with the following, we present x±(t) = x(t)±iy(t):

x+ = −2Kg

ω2

[(K − i)U − K − i] [(K + i)U + K − i]

(K2 − 1)2(U 2 − 1)2

1

U

x− = 2Kg

ω2

[(K − i)U − K − i] [(K + i)U + K − i]

(K2 − 1)2(U 2 − 1)2
U 3

z = i
2Kg

ω2

[(K − i)U − K − i] [(K + i)U + K − i]

(K2 − 1)2(U 2 − 1)2
U

λ = − 3ω2

64K2

(K2 − 1)2(K2 + 1)(U 2 − 1)5

[(K − i)U − K − i] [(K + i)U + K − i] U 4
.

In terms of the t variable, we get the simpler expressions

x+(t) = − 2Kg

ω2(K2 − 1)2

[
(K2 + 1)

(
t − t∞

t∞

)3/2 (
t∞
t

)1/2

− 4iK

(
t − t∞

t∞

)2
]

(26)

x−(t) = 2Kg

ω2(K2 − 1)2

[
(K2 + 1)

(
t

t∞

)3/2 (
t∞

t − t∞

)1/2

− 4iK

(
t

t∞

)2
]

. (27)

We see that x+ behaves as t−
1
2 and x− behaves as t

3
2 when t → 0. If we expand around

t = 0, we get Puiseux expansions in t
1
2 . These expansions depend on three parameters, K

and E plus the origin of time t0. This is because we are analyzing the trigonometric solution
which fixes one of the constants to I = 0. We will see later on that it can be generalized to
a four-parameter expansion in the elliptic case. The energy parameter appears factorized in
front of x+ and x− in the form of g/ω2 = 2E/g.

Around t∞, we see that x+ behaves as (t − t∞)
3
2 and x− behaves as (t − t∞)−

1
2 which is

symmetrical with the behavior at t = 0. This is compatible with the fact that the equations of
motion admit a symmetry (x+(t), x−(t)) ↔ (−x−(t),−x+(t)).

Remark that x±(t) are defined on the two-sheeted covering of the Riemann sphere with
two branch points at t = 0 and t = t∞. The variable U that we have introduced is in fact a
uniformizing variable for this covering, so that x±(t) are rational functions of U. Moreover,
U ↔ −1/U corresponds to t ↔ (t∞ − t) and exchanges x+ and −x−. The extra minus sign
means that we have to change the determination of the square root in the t variable. The U
variable makes this completely unambiguous:

x+

(
− 1

U

)
= −x−(U), z

(
− 1

U

)
= z(U), λ

(
− 1

U

)
= λ(U).

We emphasize that, although the system is integrable, the solutions diverge with square root
singularities at finite times t = 0, and t = t∞.

We now return to the elliptic case. Let us define the variables X = ξ 2 − E/(6g) and
Y = η2 − E/(6g). Equations (22), (23) become

t + cE = 1

4i
√

g

∫ X (X + E/(6g)) dX√
P+(X)

+
1

4i
√

g

∫ Y (Y + E/(6g)) dY√
P−(Y )

7
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cI = 1

4i
√

g

∫ X dX√
P+(X)

− 1

4i
√

g

∫ Y dY√
P−(Y )

,

where now

P±(X) = 4X3 − g2(±I )X − g3(±I )

g2(I ) = 1

3g2

(
E2 +

3

4
gI

)
, g3(I ) = E

27g3

(
E2 +

9

8
gI

)
.

Introducing the Weierstrass functions

X = ℘1(Z1) ≡ ℘(Z1, g2(I ), g3(I )), Y = ℘2(Z2) ≡ ℘(Z2, g2(−I ), g3(−I ))

the above integrals reduce to

t + cE = 1

4i
√

g

[
E

6g
(Z1 + Z2) − ζ1(Z1) − ζ2(Z2)

]
(28)

cI = 1

4i
√

g
[Z1 − Z2], (29)

where ζ is the Weierstrass zeta function, ζ ′ = −℘. The ℘ function has two periods 2ωj ,

j = 1, 2, so that ℘(z + 2ωj) = ℘(z), but the zeta function is quasi periodic, ζ(z + 2ωj ) =
ζ(z) + 2ηj . Here we have two sets of periods ωj and ηj according to the function ℘1 or ℘2,
which are in fact functions ωj(±I ) and ηj (±I ).

Note that x±(t) have poles and zeros when ξ ± iη vanish, that is when ξ 2 + η2 =
X + Y + E/(3g) = 0. Hence, we have to solve

E/(3g) + ℘1(Z1) + ℘2(Z2) = 0 (30)

Z1 − Z2 − 4i
√

gcI = 0. (31)

But differentiating equations (28), (29) we find δZ2 = δZ1 and

δt = 1

4i
√

g

(
E

3g
+ ℘1(Z1) + ℘2(Z2)

)
δZ1 +

1

8i
√

g
(℘ ′

1(Z1) + ℘ ′
2(Z2))(δZ1)

2 + · · · .

The first term vanishes when ξ 2 + η2 = 0; hence, around such a zero δZ1 � √
δt . As a

consequence, in view of equation (18), x±(t) behaves as either δt−1/2 or δt3/2 at such a point,
according to the vanishing of ξ + iη or ξ − iη. Note that this is similar to the trigonometric
case.

However, finding the pattern of these singularities is messy, because in equations (30),
(31) we have two incommensurate lattices of periods for the two Weierstrass functions.
Nevertheless, we can easily see that there is an infinite number of singularities. This is because
since the two lattices are incommensurate, for any large R and small ε, one can choose V in
the first lattice and W in the second, such that |V − W | < ε and |V |, |W | > R. Starting from
a solution Z1, Z2 of our equations, we set Z′

1 = Z1 + V and Z′
2 = Z2 + W , which still obey

equation (30). However, equation (31) is violated at order ε. Choose Z′′
1 = Z′

1, Z′′
2 =

Z′′
1 − 4i

√
gcI and plug this in equation (30). It then gets of order ε but this is an equation for

the variable Z1 which has, by complex analyticity, an exact solution close to this approximate
solution. Taking larger and larger values for R, one gets an infinite number of solutions.
Around each of these solutions, we have Puiseux expansions in the variable δt1/2.

8
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4. Kowalevski analysis

If the swinging Atwood’s machine is an algebraically integrable system, the dynamical
variables can be expressed algebraically in terms of a linear motion on some Abelian variety;
in particular all variables and time can be complexified at will. We may expect that, for general
initial conditions, the dynamical variables will blow out for some (in general complex) value
t0 of the time t. Around this value the dynamical variables should have Laurent behavior;
hence, one expects to find Laurent solutions depending on N parameters (initial conditions) if
the phase space is of dimension N. In practice one searches for Laurent expansions at t = 0
(one fixes t0 = 0) so an admissible Laurent solution should have N − 1 parameters, that is
three parameters for the example at hand.

The Puiseux solutions we have found in the previous section have the following singularity:
x and y blow up but z → 0, hence x2 + y2 → 0. This means that the singular solutions are
such that the mass m goes to the origin but rotating faster and faster. If we expand x and y in
negative powers of t, there must be large cancellations such that x2 +y2 → 0. It is much more
convenient to factorize x2 + y2 and have the cancellation between the two factors. Recalling
that

x± = x ± iy,

the equations of motion are

mẍ+ = −img + λx+

mẍ− = img + λx−
Mz̈ = −Mg − λz

z2 = x+x−.

(32)

The value of λ is a consequence of these equations

λ = mM

M + m

ż2 − ẋ+ẋ− + g(y − z)

z2
,

where y = −i(x+ − x−)/2. Let us remark that this system of equations is invariant under
(x+, x−) → (−x−,−x+); in particular y and λ are invariant. The system is also invariant under
a similarity transformation:

x±(t) → μ2x±(t/μ), z(t) → μ2z(t/μ), λ(t) → 1

μ2
λ(t/μ).

We first analyze equations (32) at the leading order. We thus look for solutions of the
form

x+ = a1t
p + · · · , x− = b1t

q + · · · ,
so that equation (32) requires

z = c1 t
p+q

2 + · · · , c2
1 = a1b1.

At the lowest order we then have

λ = mM

4(M + m)

a1b1(p − q)2tp+q−2 + 4g(y − z)

a1b1tp+q
. (33)

Clearly equations of motion (32) require that λ behave as 1/t2 for solutions blowing out as
powers. At first sight there are two ways in which this can happen: when the first term in the
numerator is dominant, or when the second term is dominant. We can always choose p � q,
up to exchange of x+ and x−; hence, p < 0 since we want to have at least one dynamical
variable diverging. On the other hand z → 0 so q is positive; hence, y − z = O(tp).

9
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The first term is dominant when q < 2, and for p �= q one has indeed λ � 1/t2. When
q = 2 both terms are of the same order and for q > 2 the second term is dominant, so that
λ = O(t−q) which is not allowed. Hence, we have basically only two cases to consider, either
p < 0, q < 2 in which the integrable case studied above belongs to (p = −1/2, q = 3/2), or
the case −2 < p < 0, q = 2, which, as we will see, covers more general values of the mass
ratio M/m.

4.1. Integrable case

Since p < 0, q < 2 we have p + q − 2 <
(
p, q,

p+q

2

)
, and we can neglect the term g(y − z)

at leading order in the expression of λ. We find, for p �= q,

λ = mM(p − q)2

4(M + m)

1

t2
+ · · · .

Similarly the equations of motion for x± give

p(p − 1) = M

4(M + m)
(p − q)2 = q(q − 1) (34)

so that (p − q)(p + q − 1) = 0, hence, since p �= q, p < q and we have p + q − 1 = 0.
Since by positivity in equation (34), p and q cannot belong to [0, 1] this implies, together with
p > p + q − 2 = −1, that

−1 < p < 0, 1 < q < 2.

Using p + q = 1 the mass ratio takes the form

M = −4mpq = m[(p − q)2 − 1] = m[(2p − 1)2 − 1]

and the mass ratio M/m is thus in the interval ]0, 8[.
The integrable case corresponds to M = 3m, and falls into this analysis with

p = − 1
2 , q = 3

2 .

These exponents are exactly those we have found in the exact solution of the elliptic integrable
case. There are no other values of p in ]−1, 0[ compatible with integer values of the mass
ratio M/m which could, according to [4], correspond to seemingly integrable behavior. We
thus consider, in the following, the integrable case M/m = 3.

As noted above the second conserved quantity is given in polar coordinates for m = 1,
introducing for convenience H2 = I

√
2/8, by

1

2
√

2
H2 = r2θ̇

d

dt
(r cos(θ/2)) +

g

2
(r sin θ)(r cos(θ/2)),

which reads in cartesian coordinates as

H2 = 1√
z(z − y)

(xẏ − yẋ)
d

dt
(z2 − zy) + gx

√
z(z − y).

Taking the square to eliminate the square roots, we get

H 2
2 = 1

z(z − y)
(xẏ − yẋ)2

(
d

dt
(z2 − zy)

)2

+ 2gx(xẏ − yẋ)
d

dt
(z2 − zy) + g2x2(z2 − zy).

We can set up an expansion in powers of
√

t :

x+ = t−
1
2
(
a1 + a2t

1
2 + · · · )

x− = t
3
2
(
b1 + b2t

1
2 + · · · )

z = t
1
2
(
d1 + d2t

1
2 + · · · )

λ = t−2
(
l1 + l2t

1
2 + · · · ).

10
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We already know that

a1b1 = d2
1 , l1 = 3m

4
.

Inserting into the equations of motion, we find the recursive system

K(s) ·

⎛
⎜⎜⎝

as+1

bs+1

ds+1

ls+1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

As+1

Bs+1

Ds+1

Ls+1

⎞
⎟⎟⎠

K(s) =

⎛
⎜⎜⎜⎝

m(s−1)(s−3)

4 − l1 0 0 −a1

0 m(s+1)(s+3)

4 − l1 0 −b1

0 0 M (s+1)(s−1)

4 + l1 d1

−b1 −a1 2d1 0

⎞
⎟⎟⎟⎠ .

The square matrix in the left-hand side is called the Kowalevski matrix, and the vector in the
right-hand side is given by

As+1 =
s−1∑
j=1

lj+1as−j+1 − img δs,5

Bs+1 =
s−1∑
j=1

lj+1bs−j+1 + img δs,1

Ds+1 = −
s−1∑
j=1

lj+1ds−j+1 − Mgδs,3

Ls+1 = −
s−1∑
j=1

dj+1ds−j+1 +
s−1∑
j=1

aj+1bs−j+1.

The determinant of the Kowalevski matrix reads

det(K(s)) = −m2d2
1

2
(s + 2)s2(s − 2).

It has a double zero at s = 0 and a third zero at the integer value s = 2. Hence, potentially
three arbitrary constants may appear in the expansion. Indeed the miracle happens at the third
level where the equations determining the coefficients a3, b3 are degenerate, leaving one extra
constant b3 = c1. The rest of the expansion is then completely determined at all orders. We
find in particular (in the following numerical computations, g = 1)

x+ = d2
1

b1
√

t
+

id2
1g

2b2
1

− 3c1d
2
1

√
t

b2
1

+

(
4ic1d

2
1 − 7b2

1d1
)
gt

5b3
1

+

((
2c1d

2
1 + ib2

1d1
)
g2 + 12b1c

2
1d

2
1

)
t

3
2

8b4
1

+ · · ·

x− = b1t
3
2 +

igt2

2
+ c1t

5
2 −

(
2ic1d1 − b2

1

)
gt3

5b1d1

−
((

6c1d1 + 3ib2
1

)
g2 − 60b1c

2
1d1

)
t

7
2

40b2
1d1

+ · · · .

11
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The existence of such a ‘miracle’ is exactly what Kowalevski noted in [8] for her integrable case
of the top. For this to happen one needs that the determinant of K(s) vanishes for the correct
number of integer values of the recursive variable s, which allows for a new indeterminate to
enter the expansion. Moreover, in this case the linear system has to be solvable which is far
from guaranteed. The general solution of the equations of motion must admit a power series
expansion, which thus must depend on 2N −1 arbitrary constants for a system of N degrees of
freedom. In our case we find a solution depending correctly on three constants, which extends
the trigonometric solution described above.

Inserting these expansions into the formula for the energy (17) we obtain

E = −md2
1

8b2
1

(g2 + 32c1b1).

Similarly, the second conserved quantity reads

H 2
2 = 2id5

1

b3
1

(
b2

1 − 2ic1d1
)2

.

It is interesting to compare these general results to the expansion in the trigonometric case
equations (26), (27). One finds

b1 = e− iπ
4

g(K2 + 1)

4
√

ω
√

K
√

K2 − 1

c1 = e− 3iπ
4

g
√

ω
√

K2 − 1(K2 + 1)

32K
3
2

d1 = e− iπ
4
g
√

K(K2 + 1)

ω
3
2 (K2 − 1)

3
2

.

With these values one checks that H2 = 0 as it should be in the trigonometric case, and that
H is indeed equal to E.

The dynamical variables (x, y, z) and their time derivatives are expressed in power series
of

√
t . These power series have a nonvanishing finite radius of convergence (we know this at

least in the trigonometric case from the exact solution) and we can check it numerically. To do
that we compute the d’Alembert quotient |an+1/an| relative to a series

∑
n ant

n which tends to
the inverse of the radius of convergence of this series when it exists. We present the result of
this computation for high order n for the series x+(t), x−(t), z(t) and λ(t) in figure 2.

In this and following similar computations, all values are calculated with absolute
precision rational numbers using a formal computation tool. This ensures accuracy of the
result.

Since the Kowalevski expansion converges in a disk, the parameters (b1, c1, d1) appearing
in these series, and the origin of time t0, can be considered as coordinates on an open set of
phase space near infinity [12]. The question then arises to compute the Poisson brackets in
these coordinates.

To do that, we start from

{Az(t), x±(t)} = ±ix±(t). (35)

This equation is valid for any time since the time evolution is a canonical transformation. We
thus insert into it the series for x±(t), where these series are really series in (t + t0)

1
2 . Similarly

Az(t) = i
m

2
(x+ẋ− − x−ẋ+)(t)

12



J. Phys. A: Math. Theor. 43 (2010) 085207 O Babelon et al

Figure 2. d’Alembert criterion for convergence for p = −1/2, q = 3/2. b1 = c1 = d1 = 1.

is expressed as a series in (t + t0)
1
2 and equation (35) is an identity in t. The Poisson bracket

is computed with the rule

{F,G} =
(

∂F

∂t0

∂G

∂b1
− ∂G

∂t0

∂F

∂b1

)
{t0, b1} +

(
∂F

∂t0

∂G

∂c1
− ∂G

∂t0

∂F

∂c1

)
{t0, c1}

+

(
∂F

∂t0

∂G

∂d1
− ∂G

∂t0

∂F

d1

)
{t0, d1} +

(
∂F

∂b1

∂G

∂c1
− ∂G

∂b1

∂F

∂c1

)
{b1, c1}

+

(
∂F

∂b1

∂G

∂d1
− ∂G

∂b1

∂F

∂d1

)
{b1, d1} +

(
∂F

∂c1

∂G

∂d1
− ∂G

∂c1

∂F

∂d1

)
{c1, d1}.

Plugging F = Az(t + t0) and G = x±(t + t0) and identifying term by term in (t + t0) we get
an infinite system for the six Poisson brackets of the coordinates, which is compatible, and
whose solution is given by

{t0, d1} = 0

{t0, b1} = 0

{t0, c1} = b1

4md2
1

{b1, d1} = b1

2md1

{c1, d1} = g2 + 16b1c1

32mb1d1

{c1, b1} = g2 + 32b1c1

32md2
1

.

13
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Figure 3. Exponents −α as functions of n, p = −1/2, q = 3/2. b1 = c1 = d1 = 1.

We can then check that

{H, b1} = {H, c1} = {H, d1} = 0, {H, t0} = 1.

Finally we see that canonical coordinates can be chosen to be the pair of couples (H, t0)

and
(

log b1,md2
1

)
; hence, the Kowalevski constants are essentially Darboux coordinates in a

neighborhood of infinity.
This shows the interest of these Darboux coordinates in a vicinity of infinity, but the

whole question of integrability is a global one. Our problem is therefore to try to extract some
information from the Kowalevski series beyond their disk of convergence. In the following,
we investigate this problem numerically. First, we have seen that an+1/an tends to a complex
number that we call with hindsight t

−1/2
∞ . Hence, an behaves asymptotically as an � t

−n/2
∞ .

One can do even better and look at the prefactor. Assuming that

an � Anαt−n/2
∞ ,

we can extract the coefficient α by computing the quantity

lim
n→∞ n2

[
an−2an

a2
n−1

− 1

]
= −α.

We show the result of this calculation in figure 3.
Note that the curves begin by large oscillations but for n sufficiently large, in the asymptotic

regime, the exponents α tend to constants. Comparing with the dominant terms in the binomial
formula ∑

nαzn �z→1 (1 − z)−1−α,

14
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we see that setting z = √
t/t∞, we read from figure 3 the various exponents:

x+(t) � (1 − z)3/2,

x−(t) � (1 − z)−1/2,

z(t) � (1 − z)1/2,

λ(t) � (1 − z)−2.

The consequence of this observation is that x±(t) have Kowalevski expansions around
t∞ with indices which are exchanged as compared to those around t = 0. Hence, we know
that

x+ = −b′
1(t∞ − t)

3
2 − ig(t∞ − t)2

2
− c′

1(t∞ − t)
5
2 + · · ·

x− = − d ′
1

2

b′
1

√
t∞ − t

− id ′
1

2
g

2b′
1

2 +
3c′

1d
′
1

2√
t∞ − t

b′
1

2 + · · · ,

where we have introduced a change of sign required by the symmetry x± → −x∓, and the
symmetry of the equations of motion under t → t∞ − t . The series expansions have new
parameters b′

1, c
′
1 and d ′

1. In the trigonometric case we see from the explicit formulae that they
are equal to the original parameters, see equations (26), (27).

We have learned from the previous analysis that the singularities are always of the
Kowalevski type, with well-defined exponents. This is perfectly consistent with the exact
solution in the trigonometric and elliptic case.

4.2. Nonintegrable case

We now explore the region of parameters −2 < p < 0, q = 2. We assume that

x+ � a1t
p, x− � b1t

2, z � c1t
p

2 +1, c2
1 = a1b1.

Note that z → 0 since we assume p > −2, and that y = − i
2 (x+ − x−) � − i

2a1t
p. We see

that both terms in equation (33) for λ contribute

λ � mM

M + m

((
p

2
− 1

)2

− ig

2b1

)
1

t2
.

The x± equation give

mp(p − 1) = mM

M + m

((
p

2
− 1

)2

− ig

2b1

)

2mb1 = img +
mM

M + m

((
p

2
− 1

)2

− ig

2b1

)
b1.

Solving for b1 we find

M = −4m
p − 1

p + 2
, b1 = − ig

(p − 2)(p + 1)
.

Note that the mass ratio is positive if −2 < p < 0, and that

λ � mp(p − 1)

t2
.

For relatively prime integers r and k we set

p = − r

k
, −2k < −r < −k.

15
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We perform the Puiseux expansions

x+ = t−
r
k

(
a1 + a2t

1
k + · · · )

x− = t2
(
b1 + b2t

1
k + · · · )

z = t−
r

2k
+1

(
d1 + d2t

1
k + · · · )

λ = t−2
(
l1 + l2t

1
k + · · · ).

We already know that

l1 = m
r(r + k)

k2
, a1 = d2

1

b1
, b1 = − igk2

(r + 2k)(r − k)
, M = 4m

r + k

2k − r
.

When we plug this into the equations of motion, we get a system of the form

Es : K(s) ·

⎛
⎜⎜⎝

as+1

bs+1

ds+1

ls+1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

As+1

Bs+1

Ds+1

Ls+1

⎞
⎟⎟⎠ , (36)

where the Kowalevski matrix reads

K(s) =

⎛
⎜⎜⎜⎜⎝

m(s−r)(s−r−k)

k2 − l1 0 0 −a1

0 m(2k+s)(k+s)

k2 − l1 0 −b1

0 0 M
(k+s−r/2)(s−r/2)

k2 + l1 d1

−b1 −a1 2d1 0

⎞
⎟⎟⎟⎟⎠

and the right-hand side of equation Es is given by

As+1 =
s∑

j=2

aj ls+2−j − img δs,2k+r

Bs+1 =
s∑

j=2

bj ls+2−j

Ds+1 = −
s∑

j=2

dj ls+2−j − Mgδs,k+r/2

Ls+1 = −
s∑

j=2

djds+2−j +
s∑

j=2

ajbs+2−j .

(37)

For s = 1, the quantities A2, B2, D2, L2 are meant to be zero. The determinant of the
Kowalevski matrix reads

det(K(s)) = −6m2d2
1

(2k + r)

k4(2k − r)
s(s + k)(s − r)(s + k − r).

In order that this determinant vanishes for two positive integer values of s, assuming k > 0,
we should have

r > 0, r − k > 0.

From the equation for Ds+1 it is natural to choose r even; otherwise the weight Mg would
disappear from the problem which is not physical. In order for r/k to be irreducible, we must
choose k odd. Setting r = 2r ′ we finally get

k

2
< r ′ < k, p = −2

r ′

k
(38)

16
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When things are set up this way the Kowalevski determinant has two strictly positive
integer roots, so that, potentially three arbitrary constants enter the expansion, or the expansion
is impossible. Impossibility occurs when the right-hand side of equation Es is nonvanishing
and does not belong to the image of K(s) for values of s which are Kowalevski indices. It
turns out that in most cases the right-hand side vanishes as we now show.

First, since we want to examine the behavior for s = r−k and s = r, we can limit ourselves
to studying the system for s = 1, . . . , r . In this case the Kronecker deltas in equation (37)
always vanish. For δs,2k+r it is obvious, and for δs,k+r/2 note that, since k � 1 + r/2, we have
k + r/2 � r + 1. Since the induction starts with A2 = B2 = D2 = L2 = 0, we get, if s = 1 is
not a Kowalevski index, that a2 = b2 = d2 = l2 = 0; hence, the right-hand side vanishes for
the next equation s = 2. This goes all the way up to s = r − k; hence, when we hit the first
Kowalevski index, it is always with vanishing right-hand side. The existence of a nontrivial
solution ar−k+1, . . . , lr−k+1 is thus guaranteed. Let us assume for the time being that the first
Kowalevski index is such that (r − k) > 1, that is r � k + 2.

As a consequence of this previous step, when s = r − k + 1 we find that As+1

reduces to ar+k−1l2 which also vanishes because l2 = 0. More generally we have
As+1 = ∑s

j=r−k+1 aj ls+2−j which vanishes when s + 2 − j < r − k + 1 for all j in the sum,
and similarly for the other components. This occurs when s < 2(r − k). For s = 2(r − k) the
right-hand side of equation Es does not vanish, and assuming that we are not on a Kowalevski
index, there is a unique nonvanishing solution a2(r−k)+1, . . . , l2(r−k)+1. The process continues
and it is easy to show by induction that the right-hand side of equation Es does not vanish
only for s = n(r − k), n being a positive integer, so nontrivial solutions are of the form
an(r−k)+1, . . . , ln(r−k)+1. Indeed, to get a nonvanishing aj ls+2−j we need to have j = n(r−k)+1
and s+2−j = n′(r−k)+1 so that s = (n+n′)(r−k). In this case we have only As+1, . . . , Ls+1

and thus as+1, · · · , ls+1, nonvanishing. This shows that the next nonvanishing positions are of
the form (n + n′)(r − k) + 1 establishing the recurrence.

The second Kowalevski index is s = r and this cannot be of the form n(r − k). Indeed,
since r and k are relatively prime, if we have r = n(r − k) we get (n − 1)r = nk; hence,
n = pr and n − 1 = qk for some integers p and q. Then (n − 1)r = nk = qkr = prk so
that p = q and finally 1 = p(r − k) which is only possible for p = 1 and r = k + 1. This
is precisely the case we have excluded up to now. As a consequence, when we arrive at the
second Kowalevski index s = r , the right-hand side of equation Es vanishes and there is a
nontrivial solution, with an extra constant.

We have shown that two new constants of motion always appear for all cases r =
k + 3, k + 5, . . . , r = 2k − 2. This covers an infinite number of values of the mass ratio M/m

for which the Kowalevski criterion is satisfied (with weak Painlevé solutions), but for which
the system is presumably nonintegrable.

Finally, we discuss the case k = r + 1. The first Kowalevski index is s = 1. In this case
the right-hand side vanishes and we have automatically a nontrivial solution [a2, b2, d2, l2].
From this point, all other solutions of the linear system do not vanish, and in particular, for
the second Kowalevski index, s = r , the right-hand side of the system is not trivial. For a
solution to exist it must be in the image of K(r). Equivalently, let us consider a covector
U = [u1, u2, u3, u4] such that U · K(r) = 0. Explicitly

u1 = 2g2k5, u2 = d2
1 (k + 1)(3k + 1)2,

u3 = id1gk2(k − 1)(3k + 1) u4 = −2 img k(k + 1)(2k + 1)(3k + 1).

The condition to be satisfied is that the scalar product

W(s) = u1As+1 + u2Bs+1 + u3Ds+1 + u4Ls+1

of this covector and the right-hand side of equation (36) vanishes for s = r = k + 1.
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For arbitrary k and s = 3, 4, . . . we have computed this scalar product W(s), and we have
observed that W(s) has a factor (s − k + 1). For example we get

W(s = 3) = −mc3
1d

2
1 (k − 2)(k + 1)(2k + 1)(3k + 1)4

4g2k5(k + 2)
.

Note that the factor (k − 2) = (r − s). For s = 4 we next get

W(s = 4) = imc4
1d

2
1 (k − 3)(k + 1)(2k + 1)(3k + 1)4P6(k)

96g3(k − 1)2k8(k + 2)2(k + 3)

with the factor (k−3) = (r−s). Here c1 is the Kowalevski constant which has been introduced
at s = 1, and P6(k) is some polynomial in k of degree six. The factors in the denominator of
course come from similar factors in det(K(s)). The expression for s = 5 has the same type
of factors in the numerator and denominator, with a more complicated polynomial P7(k) and
always a factor (r−s). This behavior is persistent as far as one can compute. The consequence
of the presence of the factor (r − s) is that, for any k, when we arrive at the second Kowalevski
index, s = r = k + 1, the scalar product W(k + 1) vanishes and the linear system is solvable.
We can thus state that for all admissible pairs (k, r) the swinging Atwood machine has weak
Painlevé expansions depending on the full set of parameters.

For example an interesting case occurs when the mass ratio M/m = 15 where the system
does not look chaotic, see [2]. This case is obtained when k = 19 and r = 26. The linear
system is solvable in this case, although the new arbitrary constants occur very far from the
beginning of the expansion. We will refrain to exhibit the solution in this case, since it is very
bulky, and proceed to show what happens with smaller values of k and r.

4.3. Example: the case k = 3, r = 4

When k = 3, we have necessarily r = 4. The Kowalevski exponents are s = 0, s = 1, s = 4.
The dynamical variables x± expand in Puiseux series of t1/3 which take the form

x+ = t−
4
3 d2

1

(
10i

9g
+ 0 t

1
3 +

140ic2
1

729g3
t

2
3 +

14 000c3
1

59 049g4
t

3
3

+
1960ic4

1m − 32 805ic2g
4

91 854g5m
t

4
3 + · · ·

)

x− = t2

(
−9ig

10
+ c1t

1
3 +

7ic2
1

30g
t

2
3 +

14c3
1

243g2
t

3
3

+

(
96 124ic4

1m − 177 147ic2g
4
)

918 540g3m
t

4
3 + · · ·

)
.

This solution depends on four arbitrary constants: t0, d1, c1, c2 (in the above expansions t
should always be understood as t + t0). We obtain

E ≡ H = 5 d2
1

(
13 412 c4

1 m − 19 683 c2 g4
)

91 854 g4
. (39)

The above constants can be used as local coordinates on phase space. To compute the Poisson
brackets of the Kowalevski constants, we proceed as in the previous section considering
{Az(t), x±(t)} = ±ix±(t). We find

{t0, c1} = 0 (40)

{t0, d1} = 0 (41)
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{t0, c2} = 14

15

1

d2
1

(42)

{d1, c1} = i
3 g

20 m

1

d1
(43)

{d1, c2} = i
13 412

32 805g3

c3
1

d1
(44)

{c1, c2} = −i

(
13 412 c4

1 m − 19 683 c2 g4
)

65 610 d2
1 g3 m

= −i
7g

25m

E

d4
1

. (45)

It is remarkable that these six relations ensure the compatibility of an infinite set of relations.
One verifies easily the Jacobi identity in spite of the crazy numbers appearing. We can compute
the Poisson brackets with H

{H, t0} = 1

{H, d1} = 0

{H, c1} = 0

{H, c2} = 0,

so that t0 is the conjugate variable of H as it should be and the other ones are constants of
motion. Note that

(
d2

1 , c1
)

is a pair of canonical variables commuting with the pair (H, t0).
Kowalevski constants are essentially Darboux coordinates.

If there were an extra conserved quantity, it would therefore be a function
F(c1, c2, d1). The variable c2 can be eliminated through H, so that we can write as well
F(H, c1, d1).

As in the integrable case we can compute numerically the radius of convergence, see
figure 4, and the exponents which nicely fit with the above Kowalevski analysis, as shown in
figure 5.

To go further, we also compute the Padé approximants of the series. It is more convenient
to consider the logarithmic derivatives ẋ±/x± because the residues of the poles are the
exponents. We present the polar decomposition of the [74, 75] Padé approximant fo ẋ+/x+.
This shows clearly, see figure 6, eight true singularities with residues respectively −1.33 and
2 (up to numerical errors) consistent with the Kowalevski analysis. The other poles having
small residues correspond to strings of poles and zeros representing algebraic branch cuts in
the Padé analysis. Note that we have set t = z3 and we have cancelled the leading z−4 at the
origin:

ẋ+/x+ = 2.07 + 0.0366i

0.812 + 0.618i + z
+

0.0295 + 0.016i

0.813 + 0.622i + z
+ · · ·

+
2.05 − 0.0136i

−0.33 + 1.04i + z
+

0.0351 − 0.007 92i

−0.332 + 1.04i + z
+ · · ·

+
2.13 − 0.0627i

−0.95 − 0.012i + z
+

0.0725 − 0.0176i

−0.954 − 1.33 × 10−2i + z
+ · · ·

+
−1.34 − 0.001 54i

−0.637 − 0.83 × i + z
+

−0.007 11 + 0.0025i

−6.49 × 10−1 − 8.52 × 10−1i + z
+ · · ·

+
2.38 − 0.027i

−0.192 − 0.703i + z
+

0.0281 + 0.0125i

−0.192 − 0.705i + z
+ · · ·

+
−1.34 + 3.547 × 10−4i

0.175 − 0.84i + z
+

−0.0064 − 3.344 × 10−4i

0.177 − 0.85i + z
+ · · ·
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Figure 4. d’Alembert criterion for convergence, lim an+1/an in the nonintegrable case c1 =
d1 = 1, c2 = 2 for N = 450.

Figure 5. Exponents at singularities in the nonintegrable case c1 = d1 = 1, c2 = 2 for N = 450.
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Figure 6. Poles and zeros of Padé approximant [M, M + 1] of ẋ+/x+ in the nonintegrable case
c1 = d1 = 1, c2 = 2, M = 59 and N = 119.

+
2.29 + 0.114i

0.629 − 0.545i + z
+

0.077 − 0.0335i

0.63 − 0.547i + z
+ · · ·

+
−1.34 − 0.004 01i

1.45 − 0.586 × 10−1i + z
+

0.0802 − 0.0866i

1.62 − 0.77i + z
+ · · · .

We see that this structure is very similar to the one we have observed in the integrable elliptic
case. This semi-local analysis does not appear to be able to discriminate between the integrable
and nonintegrable cases.

5. Conclusion

We have studied the swinging Atwood machine, which is believed to be nonintegrable except
for the mass ratio M/m = 3. We have shown on the explicit solution of the integrable
case that the Kowalevski analysis is valid, but requires weak Painlevé expansions. We have
extended this weak Painlevé analysis for other values of the mass ratio, and shown that it is
valid for an infinite number of cases. Hence, this model is remarkable in that it exhibits an
infinite number of cases where the Kowalevski analysis works at the price of using Puiseux
expansions. However, only one of these cases is known to be integrable, while the other ones
are believed to be not integrable.

In the cases where Kowalevski expansions are available, we have shown that the constants
appearing in these expansions provide Darboux coordinates on an open set of phase space
around infinity. The question of integrability of the system therefore reduces to the global
nature of this coordinate system (t0, c1, c2, d1) on phase space.
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On this open set, knowing the Poisson brackets equations (40)–(45), we can try to find
the conjugate variable of t0. We find that H must be of the form

H = − 15
14d2

1c2 + h(c1, d1).

The first term agrees with the exact formula in equation (39). The function h(c1, d1) is not
determined, but it is of course crucial to have a ‘good’ function H(ẋ+, ẋ−, x+, x−). Clearly
we can, in principle, invert locally the system of equations

x+ = x+(t − t0, c1, c2, d1)

x− = x−(t − t0, c1, c2, d1)

ẋ+ = ẋ+(t − t0, c1, c2, d1)

ẋ− = ẋ−(t − t0, c1, c2, d1),

where in the right-hand sides we mean the Kowalevski series. In doing so, we will find

t − t0 = T (x+, x−, ẋ+, ẋ−) c1 = C1(x+, x−, ẋ+, ẋ−)

c2 = C2(x+, x−, ẋ+, ẋ−) d1 = D1(x+, x−, ẋ+, ẋ−)

but the functions T ,C1, C2,D1 will behave in general extremely bad. All this shows that it
is in general impossible to make statements about the integrability of the system on the only
basis of the Kowalevski analysis. In this context it is remarkable that the global Hamiltonian
indeed exists, and it is even more remarkable that a second global Hamiltonian exists in the
integrable case. We see here in a striking way the global nature of integrability.

In the nonintegrable case, in an attempt to progress beyond the analysis of a single
singularity, we have used Padé expansions. In this semi-local analysis, the panorama which
appears is still remarkably similar to the one appearing in the elliptic integrable case. Hence,
Kowalevski analysis is not sufficient to characterize integrability. Nevertheless, it is a very
nontrivial property whose significance remains mysterious.
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